Try/Catch/Finally
in Visual FoxPro §

Hector J. Correa
hector(@hectorcorrea.com
www.hectorcorrea.com

Overview

Visual FoxPro 8 provides a new control structure, Try/Catch/Finally, for exception
handling. Exception handling is a different paradigm from traditional error handling
mechanisms like On Error and Error Method. This document provides a guide on how to
take advantage of Try/Catch/Finally to write cleaner code, and to separate code that
performs functionality features from exception handling code.

What is Try/Catch/Finally?

Try/Catch/Finally is a new control structure in Visual FoxPro 8 that allows you to
handle errors and exceptions in your applications.

Control structures are commands that affect the execution path of the code at
runtime. For example, Do While/Enddo is a control structure to create loops. Likewise,
Do Case/Endcase is a command structure that allows branching at runtime. Try/Catch is a
control structure geared towards error/exception handling.

Let’s see how Try/Catch works. Suppose you have the following code to open a
table. Note that we are deliberately trying to open a table that does not exist.

? “hello world”
nMyVar = 0

TRY
? “executing code”
nMyVar = 1
USE anonexistingtable
nMyVar = 2
nMyVar = 3
CATCH
? “uh-oh: something went wrong”
ENDTRY
? “nMyVar = ”, nMyVar
? “goodbye”

If you run this code, VFP will print the following messages on the screen:

hello world

executing code

uh-oh: something went wrong
nMyVar = 1

goodbye

Notice that the printed value of variable nMyvar is one, not three. Why is that?
The reason for this behavior is because, when an error (or more exactly an exception) is
thrown, VFP jumps to the nearest Catch that can handle the exception. In our example,
attempting to use a table that does not exist causes an exception. At this point, VFP jumps
to the catch statement and skips the lines of code between the code that caused the
exception and the catch statement.

What is an Exception?

An exception is an event that occurs during the execution of a program that
disrupts the normal flow of instructions'.

! http://java.sun.com/docs/books/tutorial/essential/exceptions/definition.html

Traditionally, when an error occurs in your code (e.g. attempting to open a table
that does not exist) VFP generates an error. However, when the code that causes the error
is inside a Try/Catch block, VFP generates an exception instead.

There is a new class in VFP that is called Exception class. All exceptions
automatically generated by VFP are instances of this Exception class.

You can catch these exceptions via the Catch statement of the Try/Catch control
structure. Let’s look at the following code:

? “hello world”
TRY
? “executing code”
USE anonexistingtable
nMyVar = 2
CATCH TO oEx
? “uh-oh: something went wrong”
? oEx.ErrorNo, oEx.Message
ENDTRY
? “goodbye”

In this example, the exception that VFP generates when it cannot find the table is
caught in the Catch statement and assigned to the oEx variable. Notice that the code
inside the Catch uses properties ErrorNo and Message of the Exception class to display
more information about the exception generated.

Error Handling versus Exception Handling

As mentioned above, Try/Catch is a control structure for exception handling. But,
what is the difference between an error handling and an exception handling? The short
answer is that exception handling unwinds the stack, while error handling does not’.

In traditional error handling, like the one achieved with On Error command and
the Error method, when an error is detected VFP executes code to handle the error but,
immediately after that, VFP continues execution in the line after the one that caused the
error. The following sample code shows this:

lError = .F.
ON ERROR lError = .T.
USE anonexistingtable
IF lError
? “something went wrong”
ELSE
? “so far so good”
ENDIF

In this example, when an error occurs, VFP sets variable 1Error to true and
continues execution on the next line of code.

? Abrahams, David. 2001-2003. http://www.boost.org/more/error_handling.html

Exception handling on the other hand unwinds the stack, which means that the
execution of the code does not continue on the next line after the one that caused the
exception. Once an exception is thrown, the execution will jump to the catch statement
that can handle the exception. The code immediately after the after line that caused the
exception will not be executed. The following example shows this. Notice that the line ?
“so far so good” will not be executed.

TRY

USE anonexistingtable

? “so far so good”
CATCH

? “something went wrong”
ENDTRY

Be aware that the catch statement that can handle the exception might not be on
the same procedure that throws the exception. It might be on any of the programs in the
stack that were called before reaching the line of code that threw the exception. We’ll talk
more about this in the following sections.

Try/Catch — The Fundamental Idea

Although the difference between error handling and exception handling might
seem subtle at first sight, there are some two significant advantages that Try/Catch brings
to the VFP developer.

The first advantage is the separation of responsibilities that could be achieved
with Try/Catch. Code structured with Try/Catch is usually cleaner than code written with
On Error. This is due to the fact that the developer does not need to spread the exception
handling code all over the place. With Try/Catch exception handling code can be
confined to the Catch block.

The following code shows how much cleaner code looks with Try/Catch when
compared to a traditional On Error implementation. Which one would you rather
maintain?

ON ERROR Sample Try/Catch Sample

LOCAL lError TRY
ON ERROR lError = .T. CD c:\temp
USE mytable EXCLUSIVE
CD c:\temp PACK
IF not lError COPY TO myothertable
USE mytable EXCLUSIVE CATCH
IF not lError ? “something went wrong”
PACK ENDTRY
COPY TO myothertable
ENDIF
ENDIF
IF lError
? “something went wrong”
ENDIF

This separation of responsibilities is even more visible when writing routines that
will be reused across several systems or across several pieces of the same application.

For example, it is common for the developer of a routine to be aware that the
routine could cause some exceptions (e.g. the routine might not be able to open a table
exclusively.) However, this developer might not know what to do with these errors.
Should his routine display the error on the screen? Should the routine log the error to a
text file? Should an administrator be notified via e-mail about the error? On the other
hand, the developer that will use the routine might know what to do about the exceptions,
but she does not have a way to detect them, she can only react to them.

The following code shows an example of this situation. In this particular example
the called routine might fail because mytable cannot be found or cannot be opened
exclusively. Yet, the routine does not handle the error, it merely throws an exception. The
caller program will catch this exception and advise the user to notify technical support
department. Another caller program might implement a different exception handling
mechanism and log the error in a text file instead.

Caller Program Called Routine

TRY PROCEDURE MyBackup
DO MyBackup USE mytable EXCLUSIVE
CATCH PACK

? “backup failed”

? “contact tech support”

ENDTRY

COPY TO myothertable

RETURN

Another example where this separation of responsibilities is very beneficial is on
n-tier applications. On this type of applications, it is often the case that the business tier
does part of the exception handling and then notifies the caller presentation tier (either a
thin or a fat client) than something went wrong. The presentation tier in a fat client

application might use a MessageBox to let the user know about the problem, while a thin
client application might render a new web page.

The second advantage that we get with exception handling is that now we have
the assurance that when an exception is detected VFP will automatically jump to an
exception handling code. In other words, the compiler is forcing exception handling
rather than leaving it up the developer’s discretion. How many times have you run into
errors that could have been avoided had the developer evaluated the error code returned
by a function in the previous lines? With Try/Catch this overlooking of errors is reduced
dramatically because VFP will automatically jump to an exception handling block as
soon as an exception is detected.

Catching Exceptions

In our last example, MyBackup procedure can generate one of many exceptions.
For example, perhaps mytable cannot be found and therefore the use command will fail.
Or perhaps the table is found but it cannot be opened exclusively.

The course of action to take in the caller program will likely depend on the type of
exception generated. A file-not-found exception might be a serious exception and might
require us to e-mail an administrator telling him about the problem. If on the other side
the exception is that the file cannot be opened exclusively perhaps we can take a less
dramatic action and tell the user to try again at a later time.

The following code shows how this could be achieved by using multiple catch
statements.

Caller Program Called Routine
TRY PROCEDURE MyBackup
DO MyBackup USE mytable EXCLUSIVE
CATCH TO oEx WHEN oEx.ErrorNo=1 PACK
? “backup failed” COPY TO myothertable
? “MyTable was not found” RETURN

? “contact tech support”
CATCH TO oEx WHEN oEx.ErrorNo=3
? “backup failed”
? “file is still in use”
? “try again later”
CATCH TO oEx
? “backup failed”
? oEx.Message
ENDTRY

Catch statements are evaluated akin to Case statements in a Do Case structure.
VFP will evaluate each Catch individually until the When condition is true. Once a When
condition is true, VFP will skip the other Catch statements. A Catch without a When
statement works as a catch-all statement and it is equivalent to using When .T.

The Finally Clause

There is an extra statement that can be used with Try/Catch. The Finally clause.
Finally is typically used to code actions that need to be taken to clean up the environment
or restore it to a previous state.

It is very important to note that the code in the Finally section will always be
executed, regardless of whether an exception is thrown or not.

The following code shows an example on how to use Finally clause to ensure that
our backup routine returns to the original folder.

Caller Program Called Routine
? “before calling back up” PROCEDUDE MyBackup
TRY ? “about to start backing up...”
DO MyBackup TRY
CATCH cOldFolder = curdir ()
? “something went wrong” CD C:\temp
ENDTRY USE mytable EXCLUSIVE
? “after calling back up” PACK
COPY TO myothertable
FINALLY

CD (cOldFolder)
IF used(“myTable”)
USE IN mytable
ENDIF
ENDTRY
? “we are done backing up”
RETURN

Notice that there is no Catch statement in the back up routine. We are assuming
that the caller program will catch the exceptions, and it will since it has a Catch-all
exceptions statement.

A common misunderstanding is that the Finally clause is unnecessary because
code inside it is always executed. Some people get confused and think that code written
after the Endtry has the same scope as code in the Finally block. This is not true. Let’s see
why not.

Assume that mytable cannot be opened exclusively in our previous example. At
that point VFP will throw an exception and look for a Catch statement in the current
procedure. Since there is no catch statement in our example, VFP will execute the code in
the Finally block and then it will unwind the stack looking for a catch statement that can
handle the exception. VFP will find the catch statement in the caller program and will
continue executing the caller program after that. Notice that VFP never executed the line
that prints the “we are done backing up” message in the Backup routine.

Nesting Try/Catch Structures

Try/Catch structures can be nested. This allows you to catch very specific
exceptions at lower levels of the stack and other more general errors at upper levels.

The following code shows an example on how this work. This code runs a routine
called procedurel which in turn calls another routine called procedure2 which in turn
calls the MyBackup procedure. For the sake of an example, let’s assume that MyBackup
routine has the same code as the one used in our last example.

Notice that Procedure2 knows how to handle exceptions where the ErrorNo is
equal to 1 (file not found) or 3 (file cannot be open for exclusive use.) If the backup
routine generates any other type of exception (e.g. ErrorNo 202, invalid path) then
Procedure2 will not be able to handle it. When this happens, VFP will continue
unwinding the stack and find a handler for the exception in Procedurel (remember that a
catch statement without a When condition works as a catch-all.)

PROCEDURE Procedurel
TRY
DO Procedure?
CATCH TO oEx
? “Something went wrong and we could”
? “not handle it in other CATCH statements”
ENDTRY
RETURN

PROCEDURE Procedure?
TRY
DO MyBackUp.prg
CATCH TO oEx WHEN oEx.ErrorNo=1
? “File to backup does not exist”
CATCH TO oEx WHEN oEx.ErrorNo=3
? “File to backup could not be opened”
? “for exclusive use.”
ENDTRY
RETURN

Throwing Your Own Exceptions

In addition to the exceptions thrown by VFP, you can throw your own exceptions
at any given point. To throw an exception, you just need to use the Throw command.

Throwing exceptions allows you to take advantage of structured exception
handling for conditions that cannot be detected by VFP per se. For example, let’s say you
want to prevent users from saving employee records without a last name. The fact that the
employee’s last name is empty is not an exception that VFP can detect’. Nevertheless,

* Unless you have a field rule at the database level. For the sake of simplicity we will assume that such rule
does not exist in our Employee table.

you can evaluate this condition yourself and throw an exception with the Throw

command.

The following code shows how the THROW command can be used in a typical
save routine. Notice that the value passed in the THROW command is retrieved via the

oEx.UserValue property.

Save routine with traditional
error handling

cError = %
IF SaveActionBeforeSave ()
IF SaveAction|()
IF SaveActionAfter ()
ENDIF
ENDIF
ENDIF
IF not empty(cError)
? “Save process failed”
? cError
ENDIF

RETURN

PROCEDURE SaveActionBeforeSave ()

1RetVal = .T.

IF empty(Employee.LastName)
cError = “Empty last name”
lRetval = .T.

ENDIF

RETURN 1lRetVal

Save routine using structured
exception handling and the THROW
command.

TRY
SaveActionBeforeSave ()
SaveAction ()
SaveActionAfter ()

CATCH TO oEx
? “Save process failed”
? oEx.UserValue

ENDTRY

RETURN

PROCEDURE SaveActionBeforeSave ()
IF empty(Employee.LastName)
THROW “Empty last name”
ENDIF
RETURN

Has Try/Catch Been Tried Before?

Although Try/Catch is new in VFP 8, Try/Catch has been available in other

programming languages for quite a while.

C++ introduced Try/Catch in the late eighties. Other languages that currently
support Try/Catch include Java, Delphi, VB.NET, and C#. In all these years, and across
all these languages, Try/Catch has proven to be an excellent mechanism to handle

exceptions.

Go ahead; don’t be afraid to give it a try.

Recommended Readings

e (astano, Antonio. VFP §: Try/Catch and Exceptions. Universal Thread

Magazine. October 2002.

http://www.universalthread.com/Magazine/October2002/Page61.asp

e Hening, Doug. CATCH Me if you Can. FoxTalk. January 2003.

http://www.foxtalknewsletter.com
e MacNeill, Andrew. FoxPro Advisor. April 2003. http://foxproadvisor.com

